Existuju desattisíce kresťanských svedectiev ľudí ktorí mali videnie neba/pekla. Boh im sprostredkoval tento zážitok, ocitli sa v nebi/pekle, no vrátili sa odtiaľ naspäť aby nám podali svoje svedectvo. Tých zážitkov je naozaj obrovské množstvo, len ja sám som zatiaľ na internete našiel okolo 134 takýchto svedectiev ( Dole uvádzam zoznam týchto svedectiev i s linkami).
Co si o týchto svedectvách myslíte ? Mali všetci títo ludia len halucinácie, alebo všetci títo ludia klamú ? Alebo sa jedná o reálne príbehy ? Ja osobne si myslím že ide o reálne javy. Zážitky sú velmi prepracované než aby mohlo ísť o nejakú chaotickú halucináciu a počet takýchto zážitkov je obrovský, takže je velmi nepravdepodobné že si to všetci vymysleli a že ani jeden z týchto opisovaných zážitkov nie je pravdivý.
Dole uvádzam osoby (134 osôb) ktoré takýto zážitok opísali a odkaz na ich svedectvá :
@patrixo Myslím, že robiť si z neho srandu nie je vhodné keďže trpí zrejme nejakou poruchou osobnosti. Dávnejšie som s ním diskutoval celé dní v jeho fóre a pri konci som mal pocit, že trolluje, tak som poslal link na veľa jeho príspevkov z birdzu jednému známemu ktorý je spevák v mojom hudobnom projekte a študuje psychológiu a ten vravel, že by nedal ruku do ohňa za jeho duševné zdravie. Že vraj kľudne môže mať schizoidnú alebo schizotypovú poruchu. Navyše to si už všimli aj ostatní birdzáci
Môžem s istotou potvrdiť že žiadnou schizofreniou netrpím. Uviedol som dôkazy pre svoje argumenty a dal linky na svedectvá. Ale je mi jasné že ked nie sú protiargumenty tak sa schádza do vymyslených psychiatrickych diagnoz.
Nech sa páči. Tu máš protiargument, ktorý to všetko vysvetluje. Ale pre teba to bude dlhá cesta k pochopeniu, takže rovno si to prečítaj celé a pokračuj cez odkazy na rozne mozgove centrá. » en.wikipedia.org/wiki/Brain...
Zmení ti to život viac jak posmrtný zážitok. Nemáš zač.
Prečítam si to celé a nakoniec zistím že ten protiargument sa tam nikde nenachádza.... Ak teda tomu rozumieš, tak mi sem priamo skopíruj citácie ktoré dokazujú tvoje tvrdenie.
134 ľudí je len počet ludí ktoré sa len MNE osobne, ZATIAL podarilo na internete nájsť. Ak by som mal rátať aj svedectvá ktoré ešte len nájdem ( zatial hladám len zopár týždnov), a ktoré nie sú zverejnené na internete, ten počet by bol obrovský.
Lenže dôkazne bremeno je teraz na tebe. Ja som sem poskytol svedectvá a dal na nich odkazy ( nikoho som neodkazoval nech si tie svedectvá vygoogli sám) a ty teraz ked tvrdíš opak, tak dolož to a presne ukáž citácie ktoré dokazujú tvoje tvrdenie.
@tomas55555 Dokazne bremeno? Jebe ti na hlavu? Ty mrháš životom na to aby si si pred ludmi dokazoval, že neveríš pičovinám a nemrháš zbytočne život zopínaním rúk. Ja som sa len prišiel pobaviť, lebo stejnak je to jedno načo mrháme životmi.
Proste čitaj, čítaj, pekne o mozgu a ja len trvám na to, že ak si raz o ňom čo to zistíš tak ti to zmení život. (nie zlepší )
@karlotiskot Ok, rovno teda povedz na rovinu že protiargument neexistuje, respektíve ty o žiadnom takom nevieš, inak by si ho sem už dávno dal a nevyhováral sa.
@tomas55555 Ja t predsa vravím, že existuje. Staćí si naštudovať niečo o ľudskom mozgu. To že si piča, čo ohrnie nos nad informáciou o najdoležitejšom orgáne svojho tela, len aby sa nestretla s protiargumentom za to ja fakt nemožem ty dokazne vemeno.
@Tomas55555 On nepísal o schyzofrénii ale schyzoidnej poruche. Schyzoidná porucha je druh psychopatie. Pri ktorej sa dá žiť relatívne normálny život.
Zatiaľ čo schyzofrénia je ťažká psychóza ktorá spôsobuje bludy, halucinácie a rozpad osobnosti. Tieto dve diagnózy majú podobný len názov inak, ale nemajú nič spoločné.
Ale myslím že darksider si do teba potreboval len kopnúť pretože si kresťan a onm sa nedokáže povzniesť nad to že existujú ľudia ktorí majú iné názoryt ako on. Ja chápem prečo má darksider zášť ku kresťanom. Ale tým že bude na niekoho chŕliť žlč škodí len sám sebe.
@karlotiskot Nehnevaj sa ale takto ako si to predstavuješ ty to nefunguje. Ziak ked niečomu nechápe a príde za učitelom, učitel mu to hned vysvetlí a nie že ho odkáže na cudzojazycnu niekolko desiatok stranovú literatúru.
Týmto len dokazuješ že nič nevieš. Pýtam sa, je pre teba tak velmi náročné mi sem dať citácie ktoré dokazujú tvoje tvrdenie ?
@tomas55555 Si fakt piča? Čo máš v hlave nasraté, alebo si padol nosom na klinec? Ja niesom tvoj učitel to po prvé, a po druhé, keď od učiteľa chceš niečo vedieť tak presne to ti dá- literatúru.
Tu máš svedectvá o Allahovy v posmrtnom živote, ktoré som našiel ZATIAL len JA za pol sekundy
a od oblubeneho dokazovatela oneho sveta pre kresťanov (niekedy mi príde že čítali tak polku jednej jeho knihy) Morsea » www.near-death.com/religion/islam....
Som rád, že ťa to určite presvedcilo prejsť na stranu moslimov. Takže tri krát za sebou len vyslovíš "Niet iného boha okrem Alláha a Mohamed je jeho prorok" a tvoj duševné bádanie je konečne na konci.
Klames, učiteľ keď učí tak neodkazuje na cudziu literaturu. Ty si nikdy nechodil do školy, keď nevieš ako ucitelia svojich žiakov učia ? Keď si sa pýtal na biologii, odkazoval ťa učiteľ na cudzojazycnu literatúru alebo ti dal v triede vysvetlenie ?
A vieš mi aj povedať o čom dotyčný vo videu hovorí ? Povedz mi obsah, pretože znova mám dojem že len bezmyslienkovite kopirujes z internetu prvú stránku ktorú nájdeš a v skutočnosti ani nevieš o čom to video je.
V každom rohu sveta si ludia namyšlaju a vymyšlaju ine rozpravky aby zarobili a stiahli na seba pozornosť. ... Na filipínach sú kresťania silní, presvedčení... o pár km ďalej presvedčení moslimovia v Indonézii... každý si verí vo svojho boha... pre každého je ten jediný skutočný pravdivý... O pár tisíc km ďalej Čína kde máš Budhizmus , takisto India - Hinduizmus ... Každý z tych stoviek milionov su presvedčení a presviedčaní o svojej pravde a položili by za ňu možno aj život, pretože cely život žiju v tom presvedčení. ... Pozri sa na to z nadhľadom... Všetkých niekto manipuluje, a tí ľudia, čo veria v jedno, či druhé sú vlastne naivní a hlúpi. Miesto toho aby verili v seba, svoju silu, v to, čo dokáže človek urobiť, veria v niečo čo im niekto narozpráva, bez overenia, bez faktov, bez ničoho... ovplyvnení rodičmi v detstvách vo veku, keď uverili všetkému čo im hovorili... Takto si cirkev získava veriachich... takto manipuluje. Zmanipuluje deti, keď ešte nemajú vlastný názor.
A o histórii náboženstiev a konfliktov nimi vyvolanými ani nehovorím...
@tomas55555 Neviem ako ty, nás učili z cudzej literatúry. Ale ok, ak si chodil do nejakého ústavu kde ste nič neštudovali iba počúvali učitela tak ako v poho. Predpokladám, źe ani bibliu si nakoniec nečítal, lebo ti stačilo aby ti ju vysvetlil niekto iný... To sú teda ťahy dpč.
Ty si to pozeral? Ja teda nie. Vieš prečo? Lebo viem niečo málo o mozgu a posmrtné zážitky mi už viac vedomostí ako mám nemožu dať a tak nemusím plytvať životom na to, aby som zhromažďoval a skúmal už vysvetlené javy. Dať tak desať minút do každej výpovedi čo si akože "zhromaždil", tak za ten čas radšej opravím strechu na dome, alebo si budem kludne aj dva dni doberať drbka na birdzi, ktorí sa snaží presvedčiť trolla o tom, že dokázal existenciu Boha (ty píčo, dúfam, že aj ty počuješ ako pripičene znie čo robíš). Ale neboj, ja viem, že to stejnak robíš len kvoli svojej hlavičke. Kebyže sa pustiš do toho štúdia čo som ti odporúčal ušetril by si vela času vo svojom živote.
Iste, ked ste študovali napríklad kvadratické rovnice tak vám učitelia vôbec nič nevysvetlili, ale vás odkázali nech si to preštudujete na internetovej stránke xyz..... Takáto škola naozaj neexistuje, a ak existuje povedz jej názov, pojdem sa tam pozrieť.
"Ale ok, ak si chodil do nejakého ústavu kde ste nič neštudovali iba počúvali učitela tak ako v poho."
Zaujímavé ako vždy ked nemáš protiargument k téme sa schyluješ k nadávkam. Ked sme preberali nejakú tému, učitel to vždy vysvetlil, a ked nám to vysvetlil tak nám niekedy odporučil i nejakú stránku, no to bolo až vtedy ked sme už mali prebraté celé učivo, a na tej stránke sa to učivo len zopakovalo. Ale v drtivej väčšine prípadov nás na nič neodkazovali.
......................................................................................................................................
A tu je ten problém, nepozeral si a takže ani nevieš o čom to je. Nevieš preto ani to že dotyčný tam hovoril o NDE a teda o zážitkoch klinickej smrti, ktoré su diametralne odlišné od krestanskych svedectiev ktoré som uviedol v mojom úvodnom komentári. Automaticky hodnotíš niečo čo nemáš dostatočne preštudované, a preto miešaš hrušky s jablkami, ale hlavne že sa tváriš ako tomu velmi rozumieš.
Ok, otázka za 100 bodov, prečo majú ludia halucinácie kedy vidia Ježiša ktorí im ukáže a detailne popíše nebo/peklo ? Prečo nemajú trebárs nejaku chaotickú halucináciu, alebo halucináciu spagetoveho monstra ?
@tomas55555 Ale vieš o tom, že v učebniciach sú kvadratické rovnice vysvetlené? Moźno si mal do nich občas nazrieť
Neplač prosím ťa o nadávkach a pičovinách. Ja som ti vravel že si ťa doberám, ty sa ma tu stále snažíš presvedčiť, že si dokázal existennciu Boha A jj hrajme sa, že nadávky sú zlo, vobec nie to slyzké pokusy o povyšovanie sa čo predvadzaš ty. Napľuľ by som ti do tváre už len za to, že si si v tomto smere dovolil hubu otvoriť na mňa
Otázka za 10000000 bodov Ako to, že sa ti snívajú veci, ktoré sa nikdy nestali? Vaaau určite preto, lebo ti anjelici zostupujú po večeroch pod viečka Fakt baviť sa s kktom čo nevie a nechce nič vedieť o hlave je dobré len na to si ho doberať a baviť sa na ňom. Najlepšie na tom ako mu povieš, že ho máš za piču a neberieš ho ani vážne, ale on sa snaží stále predstierať zmyslulpnú debatu, tým, že sa chytí každého frku a používa prirovnania, ktoré dávajú zmysel len v jeho hlave.
@karlotiskot Lenže žiaci sa neučia z učebníc ale z toho ako im to učiteľ vysvetlí. Naozaj neviem o škole kde by sa učilo tak že učiteľ rozdá žiakom učebnice a povie im aby sa z nich učili a on si bude len sedieť a nič nerobiť. Na každej jednej škole najprv učivo vysvetlí učitel, a ked je učivo vysvetlené potom prichádzaju na rad príklady z učebnice.
To vážne porovnávaš sny s krestanskymi zážitkami ? Rozdielov je tam viac než podobností. Sny si obvykle človek ani nepamätá, a ked si aj pamätá tak len velmi hmlisto, no pri krestanských zážitkov dotyčný dokáže opísať svoje svedectvo a zážitok v nebi/pekle do posledných detailov.
Co sa snov týka, áno, snívaju sa aj sny ktoré sa nikdy nestali, a čo s tým akože teraz ? Zakaždým sa mi sníva iný sen, no pri krestanských zážitkov ide zakaždým o rovnaký scénar ( videnie neba/pekla). Ako teda vysvetlíš to že zakaždým ide o rovnaký scénar ? Ak sú krestanské svedectvá len sny, prečo nemá každý jeden krestan diametralne odlisny zážitok ?
Další rozdiel je v tom, že kým sny vznikajú len počas spánku, krestanske zážitky neba/pekla často krát vznikajú u ludí ktorí sú v bdelom stave. Ako toto vysvetlíš ? Vysvetluj, (ak vieš vysvetliť).
@tomas55555 Ok tak ako hovoríš, ja som sa síce učil simultáne z učebníc a prednášok, nie som si celkom istý ako to može ísť bez štúdia, ale som rád, že ty si to zvládol. Nič to však nezmení na tom, že nie som tvoj učitel, ani že tu žiadne dokazne bremeno neexistuje, pretoze sme na birdzi, nie sudnej sieni ani na teologickej fakulte ak si si to doteraz nevsimol po mnohom mojom naznacovani
Aha, cize ked je to nekretansky zazitok tak to nejde porovnat s tym krestanskym? A samozrejme ze porovnavam, pretoze v mozgu prebiehaju podobne procesy pri snoch ako pri halucinovani/posmrtnych zazitkoch-to by si vedel keby si miesto plakania o tom ako sa nespravam ako ucitel, alebo ako pravnik, radsej prestudoval nieco o tom mozgu Uz si mohol byt dost daleko bratu
Vsetko na co sa pytas je objasnene Fakt Uz si mohol byt aj pri teme halucinovania Ale jasne chapem. Ono halucinácie s kresťanskou tématikou s´vlastne znamenia, ale bez nej sú to len halucinácie
@tomas55555 Šak som ti odpovedal Nevieš čítať, alebo máš piču miesto očí? Máš link na protiargument a vysvetlil som ti prečo zrovnávam sny a halucinácie/posmrtné zážitky.
Tvoj jediný protiargument na to je, že čo ti v škole nevysvetlili tak to si nepochopil. Ja fakt nemozem za to ze si pica a neprecitas si nic o tom mozgu a o procesoch pri halucinaciach, ale ziadas tu odomna aby som ti to vysvetloval pri tom stejnak to budes citat ako z ucebnice Tak na, ked u si nevies otvorit ten link cele ti to tu postnem najprv prvu cast precitaj a potom mozes ist priamo na posmrtne zazitky, teorie, domnienky, ale aj realne vyskumy ci pozorovania v druhej casti. Nemas zac
Brain
From Wikipedia, the free encyclopedia
Jump to navigationJump to search
This article is about the brains of all types of animals, including humans. For information specific to the human brain, see Human brain. For other uses, see Brain (disambiguation) and Brains (disambiguation).
Not to be confused with Brane or Brian.
Brain
Chimp Brain in a jar.jpg
A common chimpanzee brain
Identifiers
MeSH D001921
NeuroNames 21
TA A14.1.03.001
Anatomical terminology
[edit on Wikidata]
A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons,[1] and the estimated number of neurons in the cerebellum is 55–70 billion.[2] Each neuron is connected by synapses to several thousand other neurons. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.
Physiologically, brains exert centralized control over a body's other organs. They act on the rest of the body both by generating patterns of muscle activity and by driving the secretion of chemicals called hormones. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness such as reflexes can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful control of behavior based on complex sensory input requires the information integrating capabilities of a centralized brain.
The operations of individual brain cells are now understood in considerable detail but the way they cooperate in ensembles of millions is yet to be solved.[3] Recent models in modern neuroscience treat the brain as a biological computer, very different in mechanism from an electronic computer, but similar in the sense that it acquires information from the surrounding world, stores it, and processes it in a variety of ways.
This article compares the properties of brains across the entire range of animal species, with the greatest attention to vertebrates. It deals with the human brain insofar as it shares the properties of other brains. The ways in which the human brain differs from other brains are covered in the human brain article. Several topics that might be covered here are instead covered there because much more can be said about them in a human context. The most important is brain disease and the effects of brain damage, that are covered in the human brain article.
Contents
1 Anatomy
1.1 Cellular structure
1.2 Evolution
2 Development
3 Physiology
3.1 Neurotransmitters and receptors
3.2 Electrical activity
3.3 Metabolism
4 Function
4.1 Perception
4.2 Motor control
4.3 Arousal
4.4 Homeostasis
4.5 Motivation
4.6 Learning and memory
5 Research
5.1 History
6 Other uses
6.1 As food
6.2 In rituals
7 See also
8 References
9 External links
Anatomy
a blob with a blue patch in the center, surrounded by a white area, surrounded by a thin strip of dark-colored material
Cross section of the olfactory bulb of a rat, stained in two different ways at the same time: one stain shows neuron cell bodies, the other shows receptors for the neurotransmitter GABA.
The shape and size of the brain varies greatly between species, and identifying common features is often difficult.[4] Nevertheless, there are a number of principles of brain architecture that apply across a wide range of species.[5] Some aspects of brain structure are common to almost the entire range of animal species;[6] others distinguish "advanced" brains from more primitive ones, or distinguish vertebrates from invertebrates.[4]
The simplest way to gain information about brain anatomy is by visual inspection, but many more sophisticated techniques have been developed. Brain tissue in its natural state is too soft to work with, but it can be hardened by immersion in alcohol or other fixatives, and then sliced apart for examination of the interior. Visually, the interior of the brain consists of areas of so-called grey matter, with a dark color, separated by areas of white matter, with a lighter color. Further information can be gained by staining slices of brain tissue with a variety of chemicals that bring out areas where specific types of molecules are present in high concentrations. It is also possible to examine the microstructure of brain tissue using a microscope, and to trace the pattern of connections from one brain area to another.[7]
Cellular structure
drawing showing a neuron with a fiber emanating from it labeled "axon" and making contact with another cell. An inset shows an enlargement of the contact zone.
Neurons generate electrical signals that travel along their axons. When a pulse of electricity reaches a junction called a synapse, it causes a neurotransmitter chemical to be released, which binds to receptors on other cells and thereby alters their electrical activity.
The brains of all species are composed primarily of two broad classes of cells: neurons and glial cells. Glial cells (also known as glia or neuroglia) come in several types, and perform a number of critical functions, including structural support, metabolic support, insulation, and guidance of development. Neurons, however, are usually considered the most important cells in the brain.[8] The property that makes neurons unique is their ability to send signals to specific target cells over long distances.[8] They send these signals by means of an axon, which is a thin protoplasmic fiber that extends from the cell body and projects, usually with numerous branches, to other areas, sometimes nearby, sometimes in distant parts of the brain or body. The length of an axon can be extraordinary: for example, if a pyramidal cell (an excitatory neuron) of the cerebral cortex were magnified so that its cell body became the size of a human body, its axon, equally magnified, would become a cable a few centimeters in diameter, extending more than a kilometer.[9] These axons transmit signals in the form of electrochemical pulses called action potentials, which last less than a thousandth of a second and travel along the axon at speeds of 1–100 meters per second. Some neurons emit action potentials constantly, at rates of 10–100 per second, usually in irregular patterns; other neurons are quiet most of the time, but occasionally emit a burst of action potentials.[10]
Axons transmit signals to other neurons by means of specialized junctions called synapses. A single axon may make as many as several thousand synaptic connections with other cells.[8] When an action potential, traveling along an axon, arrives at a synapse, it causes a chemical called a neurotransmitter to be released. The neurotransmitter binds to receptor molecules in the membrane of the target cell.[8]
A bright green cell is seen against a red and black background, with long, highly branched, green processes extending out from it in multiple directions.
Neurons often have extensive networks of dendrites, which receive synaptic connections. Shown is a pyramidal neuron from the hippocampus, stained for green fluorescent protein.
Synapses are the key functional elements of the brain.[11] The essential function of the brain is cell-to-cell communication, and synapses are the points at which communication occurs. The human brain has been estimated to contain approximately 100 trillion synapses;[12] even the brain of a fruit fly contains several million.[13] The functions of these synapses are very diverse: some are excitatory (exciting the target cell); others are inhibitory; others work by activating second messenger systems that change the internal chemistry of their target cells in complex ways.[11] A large number of synapses are dynamically modifiable; that is, they are capable of changing strength in a way that is controlled by the patterns of signals that pass through them. It is widely believed that activity-dependent modification of synapses is the brain's primary mechanism for learning and memory.[11]
Most of the space in the brain is taken up by axons, which are often bundled together in what are called nerve fiber tracts. A myelinated axon is wrapped in a fatty insulating sheath of myelin, which serves to greatly increase the speed of signal propagation. (There are also unmyelinated axons). Myelin is white, making parts of the brain filled exclusively with nerve fibers appear as light-colored white matter, in contrast to the darker-colored grey matter that marks areas with high densities of neuron cell bodies.[8]
Evolution
Main article: Evolution of the brain
Generic bilaterian nervous system
A rod-shaped body contains a digestive system running from the mouth at one end to the anus at the other. Alongside the digestive system is a nerve cord with a brain at the end, near to the mouth.
Nervous system of a generic bilaterian animal, in the form of a nerve cord with segmental enlargements, and a "brain" at the front.
Except for a few primitive organisms such as sponges (which have no nervous system)[14] and cnidarians (which have a nervous system consisting of a diffuse nerve net[14]), all living multicellular animals are bilaterians, meaning animals with a bilaterally symmetric body shape (that is, left and right sides that are approximate mirror images of each other).[15] All bilaterians are thought to have descended from a common ancestor that appeared early in the Cambrian period, 485-540 million years ago, and it has been hypothesized that this common ancestor had the shape of a simple tubeworm with a segmented body.[15] At a schematic level, that basic worm-shape continues to be reflected in the body and nervous system architecture of all modern bilaterians, including vertebrates.[16] The fundamental bilateral body form is a tube with a hollow gut cavity running from the mouth to the anus, and a nerve cord with an enlargement (a ganglion) for each body segment, with an especially large ganglion at the front, called the brain. The brain is small and simple in some species, such as nematode worms; in other species, including vertebrates, it is the most complex organ in the body.[4] Some types of worms, such as leeches, also have an enlarged ganglion at the back end of the nerve cord, known as a "tail brain".[17]
There are a few types of existing bilaterians that lack a recognizable brain, including echinoderms and tunicates. It has not been definitively established whether the existence of these brainless species indicates that the earliest bilaterians lacked a brain, or whether their ancestors evolved in a way that led to the disappearance of a previously existing brain structure.
Invertebrates
A fly resting on a reflective surface. A large, red eye faces the camera. The body appears transparent, apart from black pigment at the end of its abdomen.
Fruit flies (Drosophila) have been extensively studied to gain insight into the role of genes in brain development.
This category includes tardigrades, arthropods, molluscs, and numerous types of worms. The diversity of invertebrate body plans is matched by an equal diversity in brain structures.[18]
Two groups of invertebrates have notably complex brains: arthropods (insects, crustaceans, arachnids, and others), and cephalopods (octopuses, squids, and similar molluscs).[19] The brains of arthropods and cephalopods arise from twin parallel nerve cords that extend through the body of the animal. Arthropods have a central brain, the supraesophageal ganglion, with three divisions and large optical lobes behind each eye for visual processing.[19] Cephalopods such as the octopus and squid have the largest brains of any invertebrates.[20]
There are several invertebrate species whose brains have been studied intensively because they have properties that make them convenient for experimental work:
Fruit flies (Drosophila), because of the large array of techniques available for studying their genetics, have been a natural subject for studying the role of genes in brain development.[21] In spite of the large evolutionary distance between insects and mammals, many aspects of Drosophila neurogenetics have been shown to be relevant to humans. The first biological clock genes, for example, were identified by examining Drosophila mutants that showed disrupted daily activity cycles.[22] A search in the genomes of vertebrates revealed a set of analogous genes, which were found to play similar roles in the mouse biological clock—and therefore almost certainly in the human biological clock as well.[23] Studies done on Drosophila, also show that most neuropil regions of the brain are continuously reorganized throughout life in response to specific living conditions.[24]
The nematode worm Caenorhabditis elegans, like Drosophila, has been studied largely because of its importance in genetics.[25] In the early 1970s, Sydney Brenner chose it as a model organism for studying the way that genes control development. One of the advantages of working with this worm is that the body plan is very stereotyped: the nervous system of the hermaphrodite contains exactly 302 neurons, always in the same places, making identical synaptic connections in every worm.[26] Brenner's team sliced worms into thousands of ultrathin sections and photographed each one under an electron microscope, then visually matched fibers from section to section, to map out every neuron and synapse in the entire body.[27] The complete neuronal wiring diagram of C.elegans – its connectome was achieved.[28] Nothing approaching this level of detail is available for any other organism, and the information gained has enabled a multitude of studies that would otherwise have not been possible.[29]
The sea slug Aplysia californica was chosen by Nobel Prize-winning neurophysiologist Eric Kandel as a model for studying the cellular basis of learning and memory, because of the simplicity and accessibility of its nervous system, and it has been examined in hundreds of experiments.[30]
Vertebrates
A T-shaped object is made up of the cord at the bottom which feeds into a lower central mass. This is topped by a larger central mass with an arm extending from either side.
The brain of a shark.
The first vertebrates appeared over 500 million years ago (Mya), during the Cambrian period, and may have resembled the modern hagfish in form.[31] Sharks appeared about 450 Mya, amphibians about 400 Mya, reptiles about 350 Mya, and mammals about 200 Mya. Each species has an equally long evolutionary history, but the brains of modern hagfishes, lampreys, sharks, amphibians, reptiles, and mammals show a gradient of size and complexity that roughly follows the evolutionary sequence. All of these brains contain the same set of basic anatomical components, but many are rudimentary in the hagfish, whereas in mammals the foremost part (the telencephalon) is greatly elaborated and expanded.[32]
Brains are most simply compared in terms of their size. The relationship between brain size, body size and other variables has been studied across a wide range of vertebrate species. As a rule, brain size increases with body size, but not in a simple linear proportion. In general, smaller animals tend to have larger brains, measured as a fraction of body size. For mammals, the relationship between brain volume and body mass essentially follows a power law with an exponent of about 0.75.[33] This formula describes the central tendency, but every family of mammals departs from it to some degree, in a way that reflects in part the complexity of their behavior. For example, primates have brains 5 to 10 times larger than the formula predicts. Predators tend to have larger brains than their prey, relative to body size.[34]
The nervous system is shown as a rod with protrusions along its length. The spinal cord at the bottom connects to the hindbrain which widens out before narrowing again. This is connected to the midbrain, which again bulges, and which finally connects to the forebrain which has two large protrusions.
The main subdivisions of the embryonic vertebrate brain (left), which later differentiate into structures of the adult brain (right).
All vertebrate brains share a common underlying form, which appears most clearly during early stages of embryonic development. In its earliest form, the brain appears as three swellings at the front end of the neural tube; these swellings eventually become the forebrain, midbrain, and hindbrain (the prosencephalon, mesencephalon, and rhombencephalon, respectively). At the earliest stages of brain development, the three areas are roughly equal in size. In many classes of vertebrates, such as fish and amphibians, the three parts remain similar in size in the adult, but in mammals the forebrain becomes much larger than the other parts, and the midbrain becomes very small.[8]
The brains of vertebrates are made of very soft tissue.[8] Living brain tissue is pinkish on the outside and mostly white on the inside, with subtle variations in color. Vertebrate brains are surrounded by a system of connective tissue membranes called meninges that separate the skull from the brain. Blood vessels enter the central nervous system through holes in the meningeal layers. The cells in the blood vessel walls are joined tightly to one another, forming the blood–brain barrier, which blocks the passage of many toxins and pathogens[35] (though at the same time blocking antibodies and some drugs, thereby presenting special challenges in treatment of diseases of the brain).[36]
Neuroanatomists usually divide the vertebrate brain into six main regions: the telencephalon (cerebral hemispheres), diencephalon (thalamus and hypothalamus), mesencephalon (midbrain), cerebellum, pons, and medulla oblongata. Each of these areas has a complex internal structure. Some parts, such as the cerebral cortex and the cerebellar cortex, consist of layers that are folded or convoluted to fit within the available space. Other parts, such as the thalamus and hypothalamus, consist of clusters of many small nuclei. Thousands of distinguishable areas can be identified within the vertebrate brain based on fine distinctions of neural structure, chemistry, and connectivity.[8]
Although the same basic components are present in all vertebrate brains, some branches of vertebrate evolution have led to substantial distortions of brain geometry, especially in the forebrain area. The brain of a shark shows the basic components in a straightforward way, but in teleost fishes (the great majority of existing fish species), the forebrain has become "everted", like a sock turned inside out. In birds, there are also major changes in forebrain structure.[37] These distortions can make it difficult to match brain components from one species with those of another species.[38]
Corresponding regions of human and shark brain are shown. The shark brain is splayed out, while the human brain is more compact. The shark brain starts with the medulla, which is surrounded by various structures, and ends with the telencephalon. The cross-section of the human brain shows the medulla at the bottom surrounded by the same structures, with the telencephalon thickly coating the top of the brain.
The main anatomical regions of the vertebrate brain, shown for shark and human. The same parts are present, but they differ greatly in size and shape.
Here is a list of some of the most important vertebrate brain components, along with a brief description of their functions as currently understood:
See also: List of regions in the human brain
The medulla, along with the spinal cord, contains many small nuclei involved in a wide variety of sensory and involuntary motor functions such as vomiting, heart rate and digestive processes.[8]
The pons lies in the brainstem directly above the medulla. Among other things, it contains nuclei that control often voluntary but simple acts such as sleep, respiration, swallowing, bladder function, equilibrium, eye movement, facial expressions, and posture.[39]
The hypothalamus is a small region at the base of the forebrain, whose complexity and importance belies its size. It is composed of numerous small nuclei, each with distinct connections and neurochemistry. The hypothalamus is engaged in additional involuntary or partially voluntary acts such as sleep and wake cycles, eating and drinking, and the release of some hormones.[40]
The thalamus is a collection of nuclei with diverse functions: some are involved in relaying information to and from the cerebral hemispheres, while others are involved in motivation. The subthalamic area (zona incerta) seems to contain action-generating systems for several types of "consummatory" behaviors such as eating, drinking, defecation, and copulation.[41]
The cerebellum modulates the outputs of other brain systems, whether motor related or thought related, to make them certain and precise. Removal of the cerebellum does not prevent an animal from doing anything in particular, but it makes actions hesitant and clumsy. This precision is not built-in, but learned by trial and error. The muscle coordination learned while riding a bicycle is an example of a type of neural plasticity that may take place largely within the cerebellum.[8] 10% of the brain's total volume consists of the cerebellum and 50% of all neurons are held within its structure.[42]
The optic tectum allows actions to be directed toward points in space, most commonly in response to visual input. In mammals it is usually referred to as the superior colliculus, and its best-studied function is to direct eye movements. It also directs reaching movements and other object-directed actions. It receives strong visual inputs, but also inputs from other senses that are useful in directing actions, such as auditory input in owls and input from the thermosensitive pit organs in snakes. In some primitive fishes, such as lampreys, this region is the largest part of the brain.[43] The superior colliculus is part of the midbrain.
The pallium is a layer of gray matter that lies on the surface of the forebrain and is the most complex and most recent evolutionary development of the brain as an organ.[44] In reptiles and mammals, it is called the cerebral cortex. Multiple functions involve the pallium, including smell and spatial memory. In mammals, where it becomes so large as to dominate the brain, it takes over functions from many other brain areas. In many mammals, the cerebral cortex consists of folded bulges called gyri that create deep furrows or fissures called sulci. The folds increase the surface area of the cortex and therefore increase the amount of gray matter and the amount of information that can be stored and processed.[45]
The hippocampus, strictly speaking, is found only in mammals. However, the area it derives from, the medial pallium, has counterparts in all vertebrates. There is evidence that this part of the brain is involved in complex events such as spatial memory and navigation in fishes, birds, reptiles, and mammals.[46]
The basal ganglia are a group of interconnected structures in the forebrain. The primary function of the basal ganglia appears to be action selection: they send inhibitory signals to all parts of the brain that can generate motor behaviors, and in the right circumstances can release the inhibition, so that the action-generating systems are able to execute their actions. Reward and punishment exert their most important neural effects by altering connections within the basal ganglia.[47]
The olfactory bulb is a special structure that processes olfactory sensory signals and sends its output to the olfactory part of the pallium. It is a major brain component in many vertebrates, but is greatly reduced in humans and other primates (whose senses are dominated by information acquired by sight rather than smell).[48]
Mammals
The most obvious difference between the brains of mammals and other vertebrates is in terms of size. On average, a mammal has a brain roughly twice as large as that of a bird of the same body size, and ten times as large as that of a reptile of the same body size.[49]
Size, however, is not the only difference: there are also substantial differences in shape. The hindbrain and midbrain of mammals are generally similar to those of other vertebrates, but dramatic differences appear in the forebrain, which is greatly enlarged and also altered in structure.[50] The cerebral cortex is the part of the brain that most strongly distinguishes mammals. In non-mammalian vertebrates, the surface of the cerebrum is lined with a comparatively simple three-layered structure called the pallium. In mammals, the pallium evolves into a complex six-layered structure called neocortex or isocortex.[51] Several areas at the edge of the neocortex, including the hippocampus and amygdala, are also much more extensively developed in mammals than in other vertebrates.[50]
The elaboration of the cerebral cortex carries with it changes to other brain areas. The superior colliculus, which plays a major role in visual control of behavior in most vertebrates, shrinks to a small size in mammals, and many of its functions are taken over by visual areas of the cerebral cortex.[49] The cerebellum of mammals contains a large portion (the neocerebellum) dedicated to supporting the cerebral cortex, which has no counterpart in other vertebrates.[52]
Primates
Encephalization Quotient
Species EQ[53]
Human 7.4–7.8
Common chimpanzee 2.2–2.5
Rhesus monkey 2.1
Bottlenose dolphin 4.14[54]
Elephant 1.13–2.36[55]
Dog 1.2
Horse 0.9
Rat 0.4
See also: Human brain
The brains of humans and other primates contain the same structures as the brains of other mammals, but are generally larger in proportion to body size.[56] The encephalization quotient (EQ) is used to compare brain sizes across species. It takes into account the nonlinearity of the brain-to-body relationship.[53] Humans have an average EQ in the 7-to-8 range, while most other primates have an EQ in the 2-to-3 range. Dolphins have values higher than those of primates other than humans,[54] but nearly all other mammals have EQ values that are substantially lower.
Most of the enlargement of the primate brain comes from a massive expansion of the cerebral cortex, especially the prefrontal cortex and the parts of the cortex involved in vision.[57] The visual processing network of primates includes at least 30 distinguishable brain areas, with a complex web of interconnections. It has been estimated that visual processing areas occupy more than half of the total surface of the primate neocortex.[58] The prefrontal cortex carries out functions that include planning, working memory, motivation, attention, and executive control. It takes up a much larger proportion of the brain for primates than for other species, and an especially large fraction of the human brain.[59]
Development
Main article: Neural development
Very simple drawing of the front end of a human embryo, showing each vesicle of the developing brain in a different color.
Brain of a human embryo in the sixth week of development.
The brain develops in an intricately orchestrated sequence of stages.[60] It changes in shape from a simple swelling at the front of the nerve cord in the earliest embryonic stages, to a complex array of areas and connections. Neurons are created in special zones that contain stem cells, and then migrate through the tissue to reach their ultimate locations. Once neurons have positioned themselves, their axons sprout and navigate through the brain, branching and extending as they go, until the tips reach their targets and form synaptic connections. In a number of parts of the nervous system, neurons and synapses are produced in excessive numbers during the early stages, and then the unneeded ones are pruned away.[60]
For vertebrates, the early stages of neural development are similar across all species.[60] As the embryo transforms from a round blob of cells into a wormlike structure, a narrow strip of ectoderm running along the midline of the back is induced to become the neural plate, the precursor of the nervous system. The neural plate folds inward to form the neural groove, and then the lips that line the groove merge to enclose the neural tube, a hollow cord of cells with a fluid-filled ventricle at the center. At the front end, the ventricles and cord swell to form three vesicles that are the precursors of the prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain). At the next stage, the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and related structures) and the diencephalon (which will contain the thalamus and hypothalamus). At about the same time, the hindbrain splits into the metencephalon (which will contain the cerebellum and pons) and the myelencephalon (which will contain the medulla oblongata). Each of these areas contains proliferative zones where neurons and glial cells are generated; the resulting cells then migrate, sometimes for long distances, to their final positions.[60]
Once a neuron is in place, it extends dendrites and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of genes create products that influence axonal pathfinding.[60]
The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity.[60] In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at a random point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time; that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.[61]
Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely to guide development.[61]
In humans and many other mammals, new neurons are created mainly before birth, and the infant brain contains substantially more neurons than the adult brain.[60] There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which adult neurogenesis is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different: as with most types of cells in the body, they are generated throughout the lifespan.[62]
There has long been debate about whether the qualities of mind, personality, and intelligence can be attributed to heredity or to upbringing—this is the nature and nurture controversy.[63] Although many details remain to be settled, neuroscience research has clearly shown that both factors are important. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections, which in its developed form contains far more information than the genome does. In some respects, all that matters is the presence or absence of experience during critical periods of development.[64] In other respects, the quantity and quality of experience are important; for example, there is substantial evidence that animals raised in enriched environments have thicker cerebral cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.[65]
Physiology
The functions of the brain depend on the ability of neurons to transmit electrochemical signals to other cells, and their ability to respond appropriately to electrochemical signals received from other cells. The electrical properties of neurons are controlled by a wide variety of biochemical and metabolic processes, most notably the interactions between neurotransmitters and receptors that take place at synapses.[8]
Neodpovedal si mi, pýtal som sa ťa prečo majú všetci kresťania rovnaké obsahovo rovnaké, podobné zážitky ? Pri snoch totiž nejde o rovnaké zážitky, ale každý sen sa obsahovo líší.
Naschvál som ti dával otázky na video ktoré si posielal, a na ten dlhý lin k na wiki pretože som zistoval či máš o danej veci aspon niečo naštudované, ale ako som sa presvedčil nemáš o tom naštudované ani za štipku. Hmm, to naozaj odo mna očakávaš že od takéhoto človeka budem čítať dokument ktorý je na mesiac čítania, a kde sa s najväčšou pravdepodobnostou ani nenachádza informácia ktorú hladám. Pekne si sa vykrútil, nemáš protiargumenty a preto aby si nemusel odpovedať mi tu dáš link na stostranový dokument. Namiesto toho aby si mi zopár vetami zhrnul to o čom sa v linku píše, ma tu odkazuješ na 100 stranový dokument. To naozaj očakávaš že som tak naivný ?
@tomas55555 Šak je tam tá odpoveď Čítaj a dozvieš sa fakt drsné veci o ktorých si očividne nikdy nikdajs nechyroval
Bla bla bla kecáš kokotiny, ktorými ospravedlňuješ, že si trubka, čo je lenivá si niečo zistiť o vlastnej gebuli. A ano presne o tom to je. Ze len o zakladoch mozgu to mas na mesiac citania Ty si tomu za 24 rokov ten mesiac zivota nedal, ale bol si schopny zromazdit cez stovku vypovedi a nakoniec chceš odomňa aby som ti to pár vetami zhrnul - no to výš že jo Mozno ti to raz vysvetli ucitel a ty to pochopis
Iste ja som lenivý, a to hovorí ten kto si nevedel pozrieť ani jedno 10 minutové video ktoré mi poslal, a odo mna očakáva pozrieť si dokument o dlžke jedneho mesiaca.............................................
Ty tvrdíš že to máš preštudované, prečo mi teda nemožeš vysvetliť prečo sú krestanske svedectvá halucinaciou. Namiesto tých urážok a vyhovárania si to už mohol dávno vysvetliť, ale ty to nechceš vysvetliť pretože si to ani nikdy nečítal a preštudované to nemáš, alebo to preštudované máš ale žiaden protiargument to neobsahuje.
Zase si cital len obsah lahodny tvojmu oku , skus teraz kritiku na tie veci , ale sa pozri na svedectva inych nabozenskych skupin o ich bohovi a vylúcis tym vsetky
Ja ti to predsa nevysvetlujem z jasného dovodu - lebo si kokot. Ale dosad si tam co chces.
Ale hej hej dokazal si existenciu Boha tu na birdzi, svedectvami z netu chces aj nejaky veniec okolo krku? Mam totiž len kakaovy
Podľa mňa fórum,ktoré nemá zmysel. Zase jeden verí, druhý nie. A kde je pravda?
Ďaleko za hádkami týchto dvoch sa aj tak nedostanú k vzájomnej tolerancii...
Tak to je na každom, či týmto veciam bude veriť. Ja si osobne myslím, že Boh je jeden a ten istý pre každé náboženstvo iba s tým rozdielom, že niektorí ho volajú inak a inak si vykladajú to, čo od nás chce. Ja, nakoľko som kresťanska katolíčka, snažím sa pridržiavať pravidiel, ktoré má toto náboženstvo, avšak ak je niekto moslim a pridržiava sa svojich pravidiel, dostane sa do toho istého neba ako ostatní s tým, že to konkrétne nebo iba pomenuje inak, prípadne bude mať inú predstavu o ňom ako my.
Ja som voči svedectvám trocha skeptická. Určite si myslím, že sú tie veci reálne, čo tí ľudia videli, no zároveň môžu byť aj ľudia, ktorí si to vymyslia.
na svedectvá o nebi a pekle ti poviem toľko, že otvor si Písmo sväté, a svojím životom sa snaž vydať o Ňom, teda o Pánu Bohu svedectvo. Zas je to o tom, čo sa komu snívalo, zjavilo a neviem čo. Diskutujúcich nezaujíma, čo sa komu niečo zdalo, snívalo a neviem aké halucinácie mali, pretože oni tomu neveria. Diskutuješ si si nesprávnymi ľuďmi, ktorí nechcú prísť k pravde. Takto v podstate aj ty istou mierou podnecuješ niektorých k tomu, aby písali veci, ktoré môžu napríklad urážať alebo iným spôsobom dehonestovať kresťanstvo, vieru v Boha, prípadne v hlbšej miere kto ku akej cirkvi patrí a podobne. Myslím si, že keby si sa zaoberal nejakou serióznou prácou, zistil by si, že ty jediné čo potrebuješ, je veriť v Boha, modliť sa, a plniť to, čo je napísané v biblii, dobrorečiť aj nepriateľom. A neviem presne či to my kresťania robíme. Niekedy je lepšie mlčať, ako prehovoriť, pretože v tom mlčaní sa paradoxne vyjadruje všetko bez slov. Áno, bez slov sa vyjadruje pravda, na ktorú skôr či neskôr prídu všetci, len niektorí budú zaradostení, a niektorí budú zahanbení naveky. Teraz to samozrejme nechcem robiť akúsi exegézu Zjavenia sv. apoštola Jána, ale to, že Pán Boh predsa ty dobre taktiež to vieš, vymeriava nám všetkým istý časový úsek na tejto zemi, a nikdy nevieš, kedy bude prerušený tým, že nás povolá. Ťažko to povedať. Ja svedectvám o nebi a pekle neverím, pretože moja viera mi to nekáže, a nebudem robiť niečo, čo mi nekáže a možno pochybuje moja viera. Pre mňa je autorita Písmo Sväté. Skôr ma desí biblický príbeh o lazárovi a boháčovi, ktorý jeden sa doprosuje milosti, a druhý je v abrahámovom lone šťastný. ako teda žijeme, a kde smerujeme si môžeš položiť také zamyslenie nielen pri nedeľnom čítaní Písma Svätého v cirkvi ktorej sa nachádzaš, alebo individuálne, kedy možno rozjímaš a čítaš o Písme Svätom. A kto to robí s posvätnou úctou, bázňou, s láskou k Ježišovi a ľuďom, ktorí sú okolo jeho, a ide z neho dobrota, láska, mier, všetky kresťanské čnosti, síce to neznamená, že to v duchovnom živote v akomsi duchovnom boji má vyhraté, avšak približuje sa bližšie k Bohu. Snáď najkrajšie to vyjadruje svetoznáma pieseň, ktorú poznajú kresťania mnohých denominácii, a to nielen kresťania, ale aj ateisti, a pieseň sa volá Bliž k tebe Bože môj. Citujem. Nádherný svitne deň koniec už tmám. Z tvrdých skál skúšok ti postavím chrám. V plameňoch obetí, duch môj rád zaletí, bližšie vždy k tebe len, o Bože môj. Ako vidíš v tejto poslednej, menej známej strofy krásnej piesne Blíž k tebe bože môj je vysvetlené v podstate všetko, a je tu aj odpoveď na to, čím sa už aj ty na tomto webe dlhšiu dobu zaoberáš. Len toľko som ti chcel napísať. mier.
Roleta je špeciálny inkognito mód, ktorým skryješ obsah obrazovky pred samým sebou, alebo inou osobou v tvojej izbe (napr. mama). Roletu odroluješ tak, že na ňu klikneš.
43 komentov
Co si o týchto svedectvách myslíte ? Mali všetci títo ludia len halucinácie, alebo všetci títo ludia klamú ? Alebo sa jedná o reálne príbehy ? Ja osobne si myslím že ide o reálne javy. Zážitky sú velmi prepracované než aby mohlo ísť o nejakú chaotickú halucináciu a počet takýchto zážitkov je obrovský, takže je velmi nepravdepodobné že si to všetci vymysleli a že ani jeden z týchto opisovaných zážitkov nie je pravdivý.
Dole uvádzam osoby (134 osôb) ktoré takýto zážitok opísali a odkaz na ich svedectvá :
1)Angelica Zambrano
2)Bernarda Fernandez
3)Bill Wiese
4)Curtis Kelley
5)Carmelo Brenes
6)Choo Thomas
7)Dr. Ouwuor
8)Kenneth Hagin
9)Mario Martinez
10)Mary Baxter
11)Michael Yeager
12)Ron Regan
13)Thomas Sambo
14)Victoria Nehale
» www.wonderreality.org/wp-... content/uploads/2017/12/Hell-13-Testimon ies-for-WR-website.pdf
................ ........................................ ........................................ .
15)Marietta Davis
16)Rebecca Springer
17)Lorraine Tutmare
18)George Ritchie
19)Betty Malz
20)Deborah O Donnell
21)Gary Wood
22)Richard Eby
23)Rhoda Jubilee Mitchell
24)Valvita Jones
25)Roberts Liardon
26)Richard Sigmund
27)Roland Buck
28)Gerald Landry
29)Ian McCormick
30)Yong Gyu Park
31)Jesse Duplantis
32)Don Diper
33)Maurice Maelo
34)Khalida Wukawitz
35)Bill Smith
36)Mary Neal
37)David Taylor
38)Michael McCormick
39)Colton Burpo
40)Dean Braxton
41)Marvin Besteman
42)Eben Alexander
43)Crystal McVea
44)Bob Misst
» www.wonderreality.org/wp-... c ontent/uploads/2017/12/Heaven-33-Stories -version-for-WR-website.pdf
........... ........................................ ........................................ ........................................ ....
45)Diego Ortiz
46)Percy Collett
» www.youtube.com/watch?v... =HNZIN1te_hc
47)Tyrone Wiliams
» www.youtube.com/watch?v... 5C-hxqpfjE
48)Cesar Sandoval
» www.youtube.com/watch?v... =q8JL8a FyVsg
49)Bryan Melvin
» www.youtube.com/watch?v... = U1JQg4tQED0
50)John Lopez
» www.youtube.com/watch?v... =1 mcJkYpSTNM
51)Morris Cerullo
» divinekingdom.wordpress .com/2015/03/09/i-saw-the-very-flames-of -hell-testimony-of-evangelist-morris-cer ullo/
52)Adelaida De Carillo
» www.facebook.com/notes/...
yves-nahishakiye/heaven-and-hell-are-so- real-adelaida-de-carrillo/34958182840752 2/
53)Kristen Coleman
» www.youtube.com/watch?v... =6JJXnB Smcx0
54)James Durham
» www.youtube.com/watch?v... = pp4dAAcrge8
55)Gary & Shirley Kivelowitz
» www.youtube.com/watc... h?v=viRrJlvOop0
56)Laurie Ditto
» www.youtube.com/watch?v... =q JP0iJ1Zbjg
57)John Burke
» www.youtube.com/watch?v... =a rq7GbLNQnA
58)Ana Werner
» www.youtube.com/watch?v... =B84_Gb E_3wM
59)Shane Warren
» www.youtube.com/watch?v... = ZnrpHgD5YhM
60)Kevin Zadai
» www.youtube.com/watch?v... =1 1k_LkzUjHI
61)Jeff Jansen
» www.youtube.com/watch?v... = 3M3cdXhWfTM
62)Tony Kemp
» www.youtube.com/watch?v... =Ag MpGmdl_4w
63)Eddie James
» www.youtube.com/watch?v... =N UyaShE1fOs
64)Daniel Ekechukwu
» www.youtube.com/watc... h ?v=nzx4nyZKc2U
65)Joe Hadwin
» www.youtube.com/watch?v... = IOhOynR9Jxg
66)Nancy Chandy
» www.youtube.com/watch?v... = -FuIuxjHhAo
» sk.pinterest.com/ph... ilpotth2/heaven-hell-testimonies/
67)At torney Jeffrey
» www.youtube.com/watch?v... =-FuIuxjHhAo
68)Jordan Samuel
» www.youtube.com/watch?v... = -FuIuxjHhAo
69)John Lake
70)Dudley Danielson
71)Marvin Ford
72)Aline Baxley
73)Benny Hinn
» www.wayoflife.org/database... /beware_of_alleged_trips_to_heaven.html
74)Katt Kerr
75)Don Piper
76)Robin Harfouche
77)Mahesh Chavda
» www.godisreal.today/proo... f-of-heaven/
78)Oden Hetrik
» www.youtube.com/watch?v... = G5QBZU870Ms&list=PLI4v9HkWNA453q92fp 81_hWphzIU8OL2u&index=4&t=0s
79 )Joshua Munguti
» www.christiantruthcente r.com/my-visit-to-heaven/
80)lyah Melea
» www.theheavenandhell.net/5... -minutes-in-hell-2nd-testimony-by-melea- philippines/
81)Emmanuel Senayon
» www.theheavenandhell.net /the-mystery-of-heaven-and-hell-by-emman uel-senayon-from-nigeria/
82)John Bunyan
» www.theheavenandhell.net /vision s-of-heaven-and-hell-by-john-bunyan/
83 )Shinee Moa
» www.youtube.com/watch?v... =OUv DeiUEGIc
84)Ps Yong Doo Kim
» www.theheavenandhell.net /vis ion-of-pastors-and-christians-in-hell-by -ps-yong-doo-kim/
85)Fatuma Shubisa
» www.theheavenandhell.net /fatuma-shubisa-twelve-hours-in-heaven/
86)Yvonne Sklar
» www.theheavenandhell.net /b eing-face-to-face-with-god/
87)Julie Papievis
» www.theheavenandhell.ne t/julie-papievis-to-heaven-and-back/
88 )E. Dixon
» www.theheavenandhell.net /a -gate-of-hell-queen-e-dixon/
89)Peter Panagore
» www.youtube.com/watc... h? v=NnzpqUa7yKg
90)Ann Muthoni
» www.seekandyeshallfind.info/si... ngle-post/2018/08/07/Heaven-and-hell-tes timony-from-sister-Ann-Muthoni-Kenya
91 )Rachael Mushala Chisulo
» www.seekandyeshallfind.info/si... ngle-post/2019/03/15/I-went-to-hell-for- blowing-my-hair-Outward-inner-holiness-a -must-by-Rachael-Mushala-Chisulo
92)Gab riel Doufle
» www.seekandyeshallfind.i nfo/single-post/2019/04/21/DIVINE-REVELA TION-OF-HELL-AND-HEAVEN-TO-GABRIEL-DOUFL E-OF-TOGO-IN-09-DECEMBER-2011
93)Zipora h Mushala
» www.seekandyeshallfind. info/single-post/2018/03/07/HELL-FIRE-AW AITING-FOR-THOSE-WHO-INDULGE-IN-DRINKING -OF-ALCOHOL-AND-SMOKING-OF-CIGARETTES
9 4)Emmanuel Agyarko
» www.seekandyeshallfind. info/single-post/2018/03/07/HELL-FIRE-AW AITING-FOR-THOSE-WHO-INDULGE-IN-DRINKING -OF-ALCOHOL-AND-SMOKING-OF-CIGARETTES
9 5)Ayodelle Sawyer
» www.seekandyeshallfind.i nfo/single-post/2018/03/07/HELL-FIRE-AWA ITING-FOR-THOSE-WHO-INDULGE-IN-DRINKING- OF-ALCOHOL-AND-SMOKING-OF-CIGARETTES
96 )Baek Bong-Nyo
» www.seekandyeshallfind .info/single-post/2018/03/07/HELL-FIRE-A WAITING-FOR-THOSE-WHO-INDULGE-IN-DRINKIN G-OF-ALCOHOL-AND-SMOKING-OF-CIGARETTES
97)Lee, Haak-Sung
» www.seekandyeshallfind.info/si... ngle-post/2018/03/07/HELL-FIRE-AWAITING- FOR- » www.seekandyeshallfind.i nfo/ single-post/2018/03/07/HELL-FIRE-AWAITIN G-FOR-THOSE-WHO-INDULGE-IN-DRINKING-OF-A LCOHOL-AND-SMOKING-OF-CIGARETTESTHOSE-WH O-INDULGE-IN-DRINKING-OF-ALCOHOL-AND-SMO KING-OF-CIGARETTES
98)Linda Ngaujah
» www.seekandyeshallfind. info/blog/2017/10/18/messages-from-the-l ord-to-catholics-worshipping-idols-statu es
99)Samuel Oghenetega
» www.seekandyeshallfi nd.info/blog/2017/10/18/messages-from-th e-lord-to-catholics-worshipping-idols-st atues
100)Sabino Barientos
» www.youtube.com/watc... h ?v=KJ8n098BOjw
101)bakajika muana Nkuba
» www.seekandyeshallfind.i n fo/blog/2017/10/18/messages-from-the-lor d-to-catholics-worshipping-idols-statues
102)Lunathi Zamla
» www.seekandyeshallfind.i n fo/single-post/2019/05/03/REALITY-OF-HEA VEN-AND-HELL-BY-SISTER-LUNATHI-ZAMLA-FRO M-SOUTH-AFRICA
103)Thomas niditauae
» www.youtube.com/watc... h ?v=l8vpp2aze9M
104)Philip Mantofa
» www.youtube.com/watch?v... =C64h7xVVL4w
105)Ron Stewart
» www.youtube.com/watch?v... =k-H2re-bFfc
106)Ron Ogren
» www.youtube.com/watch?v... =p dnBcq6zZnA
107)Tony Alamo
» www.alamoministries.com/Ne... wsletters/06000.pdf
108)Jordan Cook
» www.youtube.com/watch?v... =uQ kMnW2JgjY
109)Reggie Anderson
» www.youtube.com/watc... h? v=AXzVvNXiRn4
110)Kevin Basconi
» www.youtube.com/watch?v... =YS4HSKmx728
111)Jack Sheffield
» www.youtube.com/watch?v... =1uo4lQ X6Bo8
112)Howard Pittman
» www.heavenvisit.net/howa... rd-pittman.html
113)Ron Pettey
» www.heavenvisit.net/ron-p... ettey.html
114)Carl Knighton
» www.heavenvisit.net/car... l-knighton.html
115)Athet Pyan Shinthaw Paul
» www.heavenvisit.net/athet-p... yan-shinthaw-paul.html
116)Loretta Blasingame
» www.heavenvisit.net/l... oretta-blasingame.html
117)Sarah Boyanga
» www.heavenvisit.net/sara... h-boyanga.html
118)Sori Park
» www.heavenvisit.net/sori-pa... rk.html
119)Young Moon Park
» www.heavenvisit.net/young-m... oon-park.html
120)Janet Baldera
» www.soonrapture.com/jane... t-balderas.html
121)Howard Storm
» hellandheaventestimonies. wordpress.com/2010/10/23/hell/
122)Sene ca Sodi
» hellandheaventestimonies. w ordpress.com/2010/11/28/heaven/#_Seneca_ Sodi’s_testimony
123)Ricardo Cid
» hellandheaventestimonies. wo rdpress.com/2010/11/28/heaven/#_RICARDO_ CID » hellandheaventestimonies. word press.com/2010/11/28/heaven/#_RICARDO_CI D’S_TESTIMONY’S_TESTIMONY
124) Kay Lynn Trimble
» www.theheavenandhell.net /testimony-of-mormon-lady-go-to-hell/
1 25) Tamara Laroux
126) Antje Harting
» www.theheavenandhell.net /i-saw-ellen-white-in-hell-the-founder-o f-seventh-day-adventist/
127) Miguel Vásquez
» www.theheavenandhell.net /ex-cat holic-priest-testimony/
128) Acevedo Hernandez
» z3news.com/w/evangelist-ro... o-acevedo-hernandez-heaven-hell/
129) Anna Rountree
» www.divinerevelations.i nfo/documents/the_heavens_opened/
130) Jenifer Perez
» www.divinerevelations.i nfo/docu ments/jennifer_perez/hell_is_real_i_went _there_jennifer_perez.htm
131) Torben Søndergaard
» thelastref ormation.com/i-was-in-hell/
132 ) Juan Hugo ( Juzna Afrika, cirkev nezistená, pravdepodobne protestant)
» iwenttoheavenmommy. wordpress.com/2013/09/05/i-went-to-heave n-mommy/
133) Richard Antwi
» www.youtube.com/watch?v... =M muYGPxCMzM
134) Gracia Ayikoe
» kristelgarciano.wordpres s.com/2018/04/30/hell-testimony/
Môžem s istotou potvrdiť že žiadnou schizofreniou netrpím. Uviedol som dôkazy pre svoje argumenty a dal linky na svedectvá. Ale je mi jasné že ked nie sú protiargumenty tak sa schádza do vymyslených psychiatrickych diagnoz.
» en.wikipedia.org/wiki/Brain...
Zmení ti to život viac jak posmrtný zážitok. Nemáš zač.
Prečítam si to celé a nakoniec zistím že ten protiargument sa tam nikde nenachádza.... Ak teda tomu rozumieš, tak mi sem priamo skopíruj citácie ktoré dokazujú tvoje tvrdenie.
134 ľudí je len počet ludí ktoré sa len MNE osobne, ZATIAL podarilo na internete nájsť. Ak by som mal rátať aj svedectvá ktoré ešte len nájdem ( zatial hladám len zopár týždnov), a ktoré nie sú zverejnené na internete, ten počet by bol obrovský.
Lenže dôkazne bremeno je teraz na tebe. Ja som sem poskytol svedectvá a dal na nich odkazy ( nikoho som neodkazoval nech si tie svedectvá vygoogli sám) a ty teraz ked tvrdíš opak, tak dolož to a presne ukáž citácie ktoré dokazujú tvoje tvrdenie.
Proste čitaj, čítaj, pekne o mozgu a ja len trvám na to, že ak si raz o ňom čo to zistíš tak ti to zmení život. (nie zlepší )
That's all folks !
Zatiaľ čo schyzofrénia je ťažká psychóza ktorá spôsobuje bludy, halucinácie a rozpad osobnosti. Tieto dve diagnózy majú podobný len názov inak, ale nemajú nič spoločné.
Ale myslím že darksider si do teba potreboval len kopnúť pretože si kresťan a onm sa nedokáže povzniesť nad to že existujú ľudia ktorí majú iné názoryt ako on. Ja chápem prečo má darksider zášť ku kresťanom. Ale tým že bude na niekoho chŕliť žlč škodí len sám sebe.
Týmto len dokazuješ že nič nevieš. Pýtam sa, je pre teba tak velmi náročné mi sem dať citácie ktoré dokazujú tvoje tvrdenie ?
Tu máš svedectvá o Allahovy v posmrtnom živote, ktoré som našiel ZATIAL len JA za pol sekundy
a od oblubeneho dokazovatela oneho sveta pre kresťanov (niekedy mi príde že čítali tak polku jednej jeho knihy) Morsea
» www.near-death.com/religion/islam....
Som rád, že ťa to určite presvedcilo prejsť na stranu moslimov. Takže tri krát za sebou len vyslovíš "Niet iného boha okrem Alláha a Mohamed je jeho prorok" a tvoj duševné bádanie je konečne na konci.
Maa salama bratu. Allahu agbar.
Klames, učiteľ keď učí tak neodkazuje na cudziu literaturu. Ty si nikdy nechodil do školy, keď nevieš ako ucitelia svojich žiakov učia ? Keď si sa pýtal na biologii, odkazoval ťa učiteľ na cudzojazycnu literatúru alebo ti dal v triede vysvetlenie ?
A vieš mi aj povedať o čom dotyčný vo videu hovorí ? Povedz mi obsah, pretože znova mám dojem že len bezmyslienkovite kopirujes z internetu prvú stránku ktorú nájdeš a v skutočnosti ani nevieš o čom to video je.
A o histórii náboženstiev a konfliktov nimi vyvolanými ani nehovorím...
Fuj ...
Ty si to pozeral? Ja teda nie. Vieš prečo? Lebo viem niečo málo o mozgu a posmrtné zážitky mi už viac vedomostí ako mám nemožu dať a tak nemusím plytvať životom na to, aby som zhromažďoval a skúmal už vysvetlené javy. Dať tak desať minút do každej výpovedi čo si akože "zhromaždil", tak za ten čas radšej opravím strechu na dome, alebo si budem kludne aj dva dni doberať drbka na birdzi, ktorí sa snaží presvedčiť trolla o tom, že dokázal existenciu Boha (ty píčo, dúfam, že aj ty počuješ ako pripičene znie čo robíš). Ale neboj, ja viem, že to stejnak robíš len kvoli svojej hlavičke. Kebyže sa pustiš do toho štúdia čo som ti odporúčal ušetril by si vela času vo svojom živote.
"Neviem ako ty, nás učili z cudzej literatúry."
Iste, ked ste študovali napríklad kvadratické rovnice tak vám učitelia vôbec nič nevysvetlili, ale vás odkázali nech si to preštudujete na internetovej stránke xyz..... Takáto škola naozaj neexistuje, a ak existuje povedz jej názov, pojdem sa tam pozrieť.
"Ale ok, ak si chodil do nejakého ústavu kde ste nič neštudovali iba počúvali učitela tak ako v poho."
Zaujímavé ako vždy ked nemáš protiargument k téme sa schyluješ k nadávkam. Ked sme preberali nejakú tému, učitel to vždy vysvetlil, a ked nám to vysvetlil tak nám niekedy odporučil i nejakú stránku, no to bolo až vtedy ked sme už mali prebraté celé učivo, a na tej stránke sa to učivo len zopakovalo. Ale v drtivej väčšine prípadov nás na nič neodkazovali.
......................................................................................................................................
A tu je ten problém, nepozeral si a takže ani nevieš o čom to je. Nevieš preto ani to že dotyčný tam hovoril o NDE a teda o zážitkoch klinickej smrti, ktoré su diametralne odlišné od krestanskych svedectiev ktoré som uviedol v mojom úvodnom komentári. Automaticky hodnotíš niečo čo nemáš dostatočne preštudované, a preto miešaš hrušky s jablkami, ale hlavne že sa tváriš ako tomu velmi rozumieš.
Ok, otázka za 100 bodov, prečo majú ludia halucinácie kedy vidia Ježiša ktorí im ukáže a detailne popíše nebo/peklo ? Prečo nemajú trebárs nejaku chaotickú halucináciu, alebo halucináciu spagetoveho monstra ?
Neplač prosím ťa o nadávkach a pičovinách. Ja som ti vravel že si ťa doberám, ty sa ma tu stále snažíš presvedčiť, že si dokázal existennciu Boha A jj hrajme sa, že nadávky sú zlo, vobec nie to slyzké pokusy o povyšovanie sa čo predvadzaš ty. Napľuľ by som ti do tváre už len za to, že si si v tomto smere dovolil hubu otvoriť na mňa
Otázka za 10000000 bodov Ako to, že sa ti snívajú veci, ktoré sa nikdy nestali? Vaaau určite preto, lebo ti anjelici zostupujú po večeroch pod viečka Fakt baviť sa s kktom čo nevie a nechce nič vedieť o hlave je dobré len na to si ho doberať a baviť sa na ňom. Najlepšie na tom ako mu povieš, že ho máš za piču a neberieš ho ani vážne, ale on sa snaží stále predstierať zmyslulpnú debatu, tým, že sa chytí každého frku a používa prirovnania, ktoré dávajú zmysel len v jeho hlave.
To vážne porovnávaš sny s krestanskymi zážitkami ? Rozdielov je tam viac než podobností. Sny si obvykle človek ani nepamätá, a ked si aj pamätá tak len velmi hmlisto, no pri krestanských zážitkov dotyčný dokáže opísať svoje svedectvo a zážitok v nebi/pekle do posledných detailov.
Co sa snov týka, áno, snívaju sa aj sny ktoré sa nikdy nestali, a čo s tým akože teraz ? Zakaždým sa mi sníva iný sen, no pri krestanských zážitkov ide zakaždým o rovnaký scénar ( videnie neba/pekla). Ako teda vysvetlíš to že zakaždým ide o rovnaký scénar ? Ak sú krestanské svedectvá len sny, prečo nemá každý jeden krestan diametralne odlisny zážitok ?
Další rozdiel je v tom, že kým sny vznikajú len počas spánku, krestanske zážitky neba/pekla často krát vznikajú u ludí ktorí sú v bdelom stave. Ako toto vysvetlíš ? Vysvetluj, (ak vieš vysvetliť).
Aha, cize ked je to nekretansky zazitok tak to nejde porovnat s tym krestanskym? A samozrejme ze porovnavam, pretoze v mozgu prebiehaju podobne procesy pri snoch ako pri halucinovani/posmrtnych zazitkoch-to by si vedel keby si miesto plakania o tom ako sa nespravam ako ucitel, alebo ako pravnik, radsej prestudoval nieco o tom mozgu Uz si mohol byt dost daleko bratu
Vsetko na co sa pytas je objasnene Fakt Uz si mohol byt aj pri teme halucinovania Ale jasne chapem. Ono halucinácie s kresťanskou tématikou s´vlastne znamenia, ale bez nej sú to len halucinácie
Tvoj jediný protiargument na to je, že čo ti v škole nevysvetlili tak to si nepochopil. Ja fakt nemozem za to ze si pica a neprecitas si nic o tom mozgu a o procesoch pri halucinaciach, ale ziadas tu odomna aby som ti to vysvetloval pri tom stejnak to budes citat ako z ucebnice Tak na, ked u si nevies otvorit ten link cele ti to tu postnem najprv prvu cast precitaj a potom mozes ist priamo na posmrtne zazitky, teorie, domnienky, ale aj realne vyskumy ci pozorovania v druhej casti. Nemas zac
Brain
From Wikipedia, the free encyclopedia
Jump to navigationJump to search
This article is about the brains of all types of animals, including humans. For information specific to the human brain, see Human brain. For other uses, see Brain (disambiguation) and Brains (disambiguation).
Not to be confused with Brane or Brian.
Brain
Chimp Brain in a jar.jpg
A common chimpanzee brain
Identifiers
MeSH D001921
NeuroNames 21
TA A14.1.03.001
Anatomical terminology
[edit on Wikidata]
A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons,[1] and the estimated number of neurons in the cerebellum is 55–70 billion.[2] Each neuron is connected by synapses to several thousand other neurons. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.
Physiologically, brains exert centralized control over a body's other organs. They act on the rest of the body both by generating patterns of muscle activity and by driving the secretion of chemicals called hormones. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness such as reflexes can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful control of behavior based on complex sensory input requires the information integrating capabilities of a centralized brain.
The operations of individual brain cells are now understood in considerable detail but the way they cooperate in ensembles of millions is yet to be solved.[3] Recent models in modern neuroscience treat the brain as a biological computer, very different in mechanism from an electronic computer, but similar in the sense that it acquires information from the surrounding world, stores it, and processes it in a variety of ways.
This article compares the properties of brains across the entire range of animal species, with the greatest attention to vertebrates. It deals with the human brain insofar as it shares the properties of other brains. The ways in which the human brain differs from other brains are covered in the human brain article. Several topics that might be covered here are instead covered there because much more can be said about them in a human context. The most important is brain disease and the effects of brain damage, that are covered in the human brain article.
Contents
1 Anatomy
1.1 Cellular structure
1.2 Evolution
2 Development
3 Physiology
3.1 Neurotransmitters and receptors
3.2 Electrical activity
3.3 Metabolism
4 Function
4.1 Perception
4.2 Motor control
4.3 Arousal
4.4 Homeostasis
4.5 Motivation
4.6 Learning and memory
5 Research
5.1 History
6 Other uses
6.1 As food
6.2 In rituals
7 See also
8 References
9 External links
Anatomy
a blob with a blue patch in the center, surrounded by a white area, surrounded by a thin strip of dark-colored material
Cross section of the olfactory bulb of a rat, stained in two different ways at the same time: one stain shows neuron cell bodies, the other shows receptors for the neurotransmitter GABA.
The shape and size of the brain varies greatly between species, and identifying common features is often difficult.[4] Nevertheless, there are a number of principles of brain architecture that apply across a wide range of species.[5] Some aspects of brain structure are common to almost the entire range of animal species;[6] others distinguish "advanced" brains from more primitive ones, or distinguish vertebrates from invertebrates.[4]
The simplest way to gain information about brain anatomy is by visual inspection, but many more sophisticated techniques have been developed. Brain tissue in its natural state is too soft to work with, but it can be hardened by immersion in alcohol or other fixatives, and then sliced apart for examination of the interior. Visually, the interior of the brain consists of areas of so-called grey matter, with a dark color, separated by areas of white matter, with a lighter color. Further information can be gained by staining slices of brain tissue with a variety of chemicals that bring out areas where specific types of molecules are present in high concentrations. It is also possible to examine the microstructure of brain tissue using a microscope, and to trace the pattern of connections from one brain area to another.[7]
Cellular structure
drawing showing a neuron with a fiber emanating from it labeled "axon" and making contact with another cell. An inset shows an enlargement of the contact zone.
Neurons generate electrical signals that travel along their axons. When a pulse of electricity reaches a junction called a synapse, it causes a neurotransmitter chemical to be released, which binds to receptors on other cells and thereby alters their electrical activity.
The brains of all species are composed primarily of two broad classes of cells: neurons and glial cells. Glial cells (also known as glia or neuroglia) come in several types, and perform a number of critical functions, including structural support, metabolic support, insulation, and guidance of development. Neurons, however, are usually considered the most important cells in the brain.[8] The property that makes neurons unique is their ability to send signals to specific target cells over long distances.[8] They send these signals by means of an axon, which is a thin protoplasmic fiber that extends from the cell body and projects, usually with numerous branches, to other areas, sometimes nearby, sometimes in distant parts of the brain or body. The length of an axon can be extraordinary: for example, if a pyramidal cell (an excitatory neuron) of the cerebral cortex were magnified so that its cell body became the size of a human body, its axon, equally magnified, would become a cable a few centimeters in diameter, extending more than a kilometer.[9] These axons transmit signals in the form of electrochemical pulses called action potentials, which last less than a thousandth of a second and travel along the axon at speeds of 1–100 meters per second. Some neurons emit action potentials constantly, at rates of 10–100 per second, usually in irregular patterns; other neurons are quiet most of the time, but occasionally emit a burst of action potentials.[10]
Axons transmit signals to other neurons by means of specialized junctions called synapses. A single axon may make as many as several thousand synaptic connections with other cells.[8] When an action potential, traveling along an axon, arrives at a synapse, it causes a chemical called a neurotransmitter to be released. The neurotransmitter binds to receptor molecules in the membrane of the target cell.[8]
A bright green cell is seen against a red and black background, with long, highly branched, green processes extending out from it in multiple directions.
Neurons often have extensive networks of dendrites, which receive synaptic connections. Shown is a pyramidal neuron from the hippocampus, stained for green fluorescent protein.
Synapses are the key functional elements of the brain.[11] The essential function of the brain is cell-to-cell communication, and synapses are the points at which communication occurs. The human brain has been estimated to contain approximately 100 trillion synapses;[12] even the brain of a fruit fly contains several million.[13] The functions of these synapses are very diverse: some are excitatory (exciting the target cell); others are inhibitory; others work by activating second messenger systems that change the internal chemistry of their target cells in complex ways.[11] A large number of synapses are dynamically modifiable; that is, they are capable of changing strength in a way that is controlled by the patterns of signals that pass through them. It is widely believed that activity-dependent modification of synapses is the brain's primary mechanism for learning and memory.[11]
Most of the space in the brain is taken up by axons, which are often bundled together in what are called nerve fiber tracts. A myelinated axon is wrapped in a fatty insulating sheath of myelin, which serves to greatly increase the speed of signal propagation. (There are also unmyelinated axons). Myelin is white, making parts of the brain filled exclusively with nerve fibers appear as light-colored white matter, in contrast to the darker-colored grey matter that marks areas with high densities of neuron cell bodies.[8]
Evolution
Main article: Evolution of the brain
Generic bilaterian nervous system
A rod-shaped body contains a digestive system running from the mouth at one end to the anus at the other. Alongside the digestive system is a nerve cord with a brain at the end, near to the mouth.
Nervous system of a generic bilaterian animal, in the form of a nerve cord with segmental enlargements, and a "brain" at the front.
Except for a few primitive organisms such as sponges (which have no nervous system)[14] and cnidarians (which have a nervous system consisting of a diffuse nerve net[14]), all living multicellular animals are bilaterians, meaning animals with a bilaterally symmetric body shape (that is, left and right sides that are approximate mirror images of each other).[15] All bilaterians are thought to have descended from a common ancestor that appeared early in the Cambrian period, 485-540 million years ago, and it has been hypothesized that this common ancestor had the shape of a simple tubeworm with a segmented body.[15] At a schematic level, that basic worm-shape continues to be reflected in the body and nervous system architecture of all modern bilaterians, including vertebrates.[16] The fundamental bilateral body form is a tube with a hollow gut cavity running from the mouth to the anus, and a nerve cord with an enlargement (a ganglion) for each body segment, with an especially large ganglion at the front, called the brain. The brain is small and simple in some species, such as nematode worms; in other species, including vertebrates, it is the most complex organ in the body.[4] Some types of worms, such as leeches, also have an enlarged ganglion at the back end of the nerve cord, known as a "tail brain".[17]
There are a few types of existing bilaterians that lack a recognizable brain, including echinoderms and tunicates. It has not been definitively established whether the existence of these brainless species indicates that the earliest bilaterians lacked a brain, or whether their ancestors evolved in a way that led to the disappearance of a previously existing brain structure.
Invertebrates
A fly resting on a reflective surface. A large, red eye faces the camera. The body appears transparent, apart from black pigment at the end of its abdomen.
Fruit flies (Drosophila) have been extensively studied to gain insight into the role of genes in brain development.
This category includes tardigrades, arthropods, molluscs, and numerous types of worms. The diversity of invertebrate body plans is matched by an equal diversity in brain structures.[18]
Two groups of invertebrates have notably complex brains: arthropods (insects, crustaceans, arachnids, and others), and cephalopods (octopuses, squids, and similar molluscs).[19] The brains of arthropods and cephalopods arise from twin parallel nerve cords that extend through the body of the animal. Arthropods have a central brain, the supraesophageal ganglion, with three divisions and large optical lobes behind each eye for visual processing.[19] Cephalopods such as the octopus and squid have the largest brains of any invertebrates.[20]
There are several invertebrate species whose brains have been studied intensively because they have properties that make them convenient for experimental work:
Fruit flies (Drosophila), because of the large array of techniques available for studying their genetics, have been a natural subject for studying the role of genes in brain development.[21] In spite of the large evolutionary distance between insects and mammals, many aspects of Drosophila neurogenetics have been shown to be relevant to humans. The first biological clock genes, for example, were identified by examining Drosophila mutants that showed disrupted daily activity cycles.[22] A search in the genomes of vertebrates revealed a set of analogous genes, which were found to play similar roles in the mouse biological clock—and therefore almost certainly in the human biological clock as well.[23] Studies done on Drosophila, also show that most neuropil regions of the brain are continuously reorganized throughout life in response to specific living conditions.[24]
The nematode worm Caenorhabditis elegans, like Drosophila, has been studied largely because of its importance in genetics.[25] In the early 1970s, Sydney Brenner chose it as a model organism for studying the way that genes control development. One of the advantages of working with this worm is that the body plan is very stereotyped: the nervous system of the hermaphrodite contains exactly 302 neurons, always in the same places, making identical synaptic connections in every worm.[26] Brenner's team sliced worms into thousands of ultrathin sections and photographed each one under an electron microscope, then visually matched fibers from section to section, to map out every neuron and synapse in the entire body.[27] The complete neuronal wiring diagram of C.elegans – its connectome was achieved.[28] Nothing approaching this level of detail is available for any other organism, and the information gained has enabled a multitude of studies that would otherwise have not been possible.[29]
The sea slug Aplysia californica was chosen by Nobel Prize-winning neurophysiologist Eric Kandel as a model for studying the cellular basis of learning and memory, because of the simplicity and accessibility of its nervous system, and it has been examined in hundreds of experiments.[30]
Vertebrates
A T-shaped object is made up of the cord at the bottom which feeds into a lower central mass. This is topped by a larger central mass with an arm extending from either side.
The brain of a shark.
The first vertebrates appeared over 500 million years ago (Mya), during the Cambrian period, and may have resembled the modern hagfish in form.[31] Sharks appeared about 450 Mya, amphibians about 400 Mya, reptiles about 350 Mya, and mammals about 200 Mya. Each species has an equally long evolutionary history, but the brains of modern hagfishes, lampreys, sharks, amphibians, reptiles, and mammals show a gradient of size and complexity that roughly follows the evolutionary sequence. All of these brains contain the same set of basic anatomical components, but many are rudimentary in the hagfish, whereas in mammals the foremost part (the telencephalon) is greatly elaborated and expanded.[32]
Brains are most simply compared in terms of their size. The relationship between brain size, body size and other variables has been studied across a wide range of vertebrate species. As a rule, brain size increases with body size, but not in a simple linear proportion. In general, smaller animals tend to have larger brains, measured as a fraction of body size. For mammals, the relationship between brain volume and body mass essentially follows a power law with an exponent of about 0.75.[33] This formula describes the central tendency, but every family of mammals departs from it to some degree, in a way that reflects in part the complexity of their behavior. For example, primates have brains 5 to 10 times larger than the formula predicts. Predators tend to have larger brains than their prey, relative to body size.[34]
The nervous system is shown as a rod with protrusions along its length. The spinal cord at the bottom connects to the hindbrain which widens out before narrowing again. This is connected to the midbrain, which again bulges, and which finally connects to the forebrain which has two large protrusions.
The main subdivisions of the embryonic vertebrate brain (left), which later differentiate into structures of the adult brain (right).
All vertebrate brains share a common underlying form, which appears most clearly during early stages of embryonic development. In its earliest form, the brain appears as three swellings at the front end of the neural tube; these swellings eventually become the forebrain, midbrain, and hindbrain (the prosencephalon, mesencephalon, and rhombencephalon, respectively). At the earliest stages of brain development, the three areas are roughly equal in size. In many classes of vertebrates, such as fish and amphibians, the three parts remain similar in size in the adult, but in mammals the forebrain becomes much larger than the other parts, and the midbrain becomes very small.[8]
The brains of vertebrates are made of very soft tissue.[8] Living brain tissue is pinkish on the outside and mostly white on the inside, with subtle variations in color. Vertebrate brains are surrounded by a system of connective tissue membranes called meninges that separate the skull from the brain. Blood vessels enter the central nervous system through holes in the meningeal layers. The cells in the blood vessel walls are joined tightly to one another, forming the blood–brain barrier, which blocks the passage of many toxins and pathogens[35] (though at the same time blocking antibodies and some drugs, thereby presenting special challenges in treatment of diseases of the brain).[36]
Neuroanatomists usually divide the vertebrate brain into six main regions: the telencephalon (cerebral hemispheres), diencephalon (thalamus and hypothalamus), mesencephalon (midbrain), cerebellum, pons, and medulla oblongata. Each of these areas has a complex internal structure. Some parts, such as the cerebral cortex and the cerebellar cortex, consist of layers that are folded or convoluted to fit within the available space. Other parts, such as the thalamus and hypothalamus, consist of clusters of many small nuclei. Thousands of distinguishable areas can be identified within the vertebrate brain based on fine distinctions of neural structure, chemistry, and connectivity.[8]
Although the same basic components are present in all vertebrate brains, some branches of vertebrate evolution have led to substantial distortions of brain geometry, especially in the forebrain area. The brain of a shark shows the basic components in a straightforward way, but in teleost fishes (the great majority of existing fish species), the forebrain has become "everted", like a sock turned inside out. In birds, there are also major changes in forebrain structure.[37] These distortions can make it difficult to match brain components from one species with those of another species.[38]
Corresponding regions of human and shark brain are shown. The shark brain is splayed out, while the human brain is more compact. The shark brain starts with the medulla, which is surrounded by various structures, and ends with the telencephalon. The cross-section of the human brain shows the medulla at the bottom surrounded by the same structures, with the telencephalon thickly coating the top of the brain.
The main anatomical regions of the vertebrate brain, shown for shark and human. The same parts are present, but they differ greatly in size and shape.
Here is a list of some of the most important vertebrate brain components, along with a brief description of their functions as currently understood:
See also: List of regions in the human brain
The medulla, along with the spinal cord, contains many small nuclei involved in a wide variety of sensory and involuntary motor functions such as vomiting, heart rate and digestive processes.[8]
The pons lies in the brainstem directly above the medulla. Among other things, it contains nuclei that control often voluntary but simple acts such as sleep, respiration, swallowing, bladder function, equilibrium, eye movement, facial expressions, and posture.[39]
The hypothalamus is a small region at the base of the forebrain, whose complexity and importance belies its size. It is composed of numerous small nuclei, each with distinct connections and neurochemistry. The hypothalamus is engaged in additional involuntary or partially voluntary acts such as sleep and wake cycles, eating and drinking, and the release of some hormones.[40]
The thalamus is a collection of nuclei with diverse functions: some are involved in relaying information to and from the cerebral hemispheres, while others are involved in motivation. The subthalamic area (zona incerta) seems to contain action-generating systems for several types of "consummatory" behaviors such as eating, drinking, defecation, and copulation.[41]
The cerebellum modulates the outputs of other brain systems, whether motor related or thought related, to make them certain and precise. Removal of the cerebellum does not prevent an animal from doing anything in particular, but it makes actions hesitant and clumsy. This precision is not built-in, but learned by trial and error. The muscle coordination learned while riding a bicycle is an example of a type of neural plasticity that may take place largely within the cerebellum.[8] 10% of the brain's total volume consists of the cerebellum and 50% of all neurons are held within its structure.[42]
The optic tectum allows actions to be directed toward points in space, most commonly in response to visual input. In mammals it is usually referred to as the superior colliculus, and its best-studied function is to direct eye movements. It also directs reaching movements and other object-directed actions. It receives strong visual inputs, but also inputs from other senses that are useful in directing actions, such as auditory input in owls and input from the thermosensitive pit organs in snakes. In some primitive fishes, such as lampreys, this region is the largest part of the brain.[43] The superior colliculus is part of the midbrain.
The pallium is a layer of gray matter that lies on the surface of the forebrain and is the most complex and most recent evolutionary development of the brain as an organ.[44] In reptiles and mammals, it is called the cerebral cortex. Multiple functions involve the pallium, including smell and spatial memory. In mammals, where it becomes so large as to dominate the brain, it takes over functions from many other brain areas. In many mammals, the cerebral cortex consists of folded bulges called gyri that create deep furrows or fissures called sulci. The folds increase the surface area of the cortex and therefore increase the amount of gray matter and the amount of information that can be stored and processed.[45]
The hippocampus, strictly speaking, is found only in mammals. However, the area it derives from, the medial pallium, has counterparts in all vertebrates. There is evidence that this part of the brain is involved in complex events such as spatial memory and navigation in fishes, birds, reptiles, and mammals.[46]
The basal ganglia are a group of interconnected structures in the forebrain. The primary function of the basal ganglia appears to be action selection: they send inhibitory signals to all parts of the brain that can generate motor behaviors, and in the right circumstances can release the inhibition, so that the action-generating systems are able to execute their actions. Reward and punishment exert their most important neural effects by altering connections within the basal ganglia.[47]
The olfactory bulb is a special structure that processes olfactory sensory signals and sends its output to the olfactory part of the pallium. It is a major brain component in many vertebrates, but is greatly reduced in humans and other primates (whose senses are dominated by information acquired by sight rather than smell).[48]
Mammals
The most obvious difference between the brains of mammals and other vertebrates is in terms of size. On average, a mammal has a brain roughly twice as large as that of a bird of the same body size, and ten times as large as that of a reptile of the same body size.[49]
Size, however, is not the only difference: there are also substantial differences in shape. The hindbrain and midbrain of mammals are generally similar to those of other vertebrates, but dramatic differences appear in the forebrain, which is greatly enlarged and also altered in structure.[50] The cerebral cortex is the part of the brain that most strongly distinguishes mammals. In non-mammalian vertebrates, the surface of the cerebrum is lined with a comparatively simple three-layered structure called the pallium. In mammals, the pallium evolves into a complex six-layered structure called neocortex or isocortex.[51] Several areas at the edge of the neocortex, including the hippocampus and amygdala, are also much more extensively developed in mammals than in other vertebrates.[50]
The elaboration of the cerebral cortex carries with it changes to other brain areas. The superior colliculus, which plays a major role in visual control of behavior in most vertebrates, shrinks to a small size in mammals, and many of its functions are taken over by visual areas of the cerebral cortex.[49] The cerebellum of mammals contains a large portion (the neocerebellum) dedicated to supporting the cerebral cortex, which has no counterpart in other vertebrates.[52]
Primates
Encephalization Quotient
Species EQ[53]
Human 7.4–7.8
Common chimpanzee 2.2–2.5
Rhesus monkey 2.1
Bottlenose dolphin 4.14[54]
Elephant 1.13–2.36[55]
Dog 1.2
Horse 0.9
Rat 0.4
See also: Human brain
The brains of humans and other primates contain the same structures as the brains of other mammals, but are generally larger in proportion to body size.[56] The encephalization quotient (EQ) is used to compare brain sizes across species. It takes into account the nonlinearity of the brain-to-body relationship.[53] Humans have an average EQ in the 7-to-8 range, while most other primates have an EQ in the 2-to-3 range. Dolphins have values higher than those of primates other than humans,[54] but nearly all other mammals have EQ values that are substantially lower.
Most of the enlargement of the primate brain comes from a massive expansion of the cerebral cortex, especially the prefrontal cortex and the parts of the cortex involved in vision.[57] The visual processing network of primates includes at least 30 distinguishable brain areas, with a complex web of interconnections. It has been estimated that visual processing areas occupy more than half of the total surface of the primate neocortex.[58] The prefrontal cortex carries out functions that include planning, working memory, motivation, attention, and executive control. It takes up a much larger proportion of the brain for primates than for other species, and an especially large fraction of the human brain.[59]
Development
Main article: Neural development
Very simple drawing of the front end of a human embryo, showing each vesicle of the developing brain in a different color.
Brain of a human embryo in the sixth week of development.
The brain develops in an intricately orchestrated sequence of stages.[60] It changes in shape from a simple swelling at the front of the nerve cord in the earliest embryonic stages, to a complex array of areas and connections. Neurons are created in special zones that contain stem cells, and then migrate through the tissue to reach their ultimate locations. Once neurons have positioned themselves, their axons sprout and navigate through the brain, branching and extending as they go, until the tips reach their targets and form synaptic connections. In a number of parts of the nervous system, neurons and synapses are produced in excessive numbers during the early stages, and then the unneeded ones are pruned away.[60]
For vertebrates, the early stages of neural development are similar across all species.[60] As the embryo transforms from a round blob of cells into a wormlike structure, a narrow strip of ectoderm running along the midline of the back is induced to become the neural plate, the precursor of the nervous system. The neural plate folds inward to form the neural groove, and then the lips that line the groove merge to enclose the neural tube, a hollow cord of cells with a fluid-filled ventricle at the center. At the front end, the ventricles and cord swell to form three vesicles that are the precursors of the prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain). At the next stage, the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and related structures) and the diencephalon (which will contain the thalamus and hypothalamus). At about the same time, the hindbrain splits into the metencephalon (which will contain the cerebellum and pons) and the myelencephalon (which will contain the medulla oblongata). Each of these areas contains proliferative zones where neurons and glial cells are generated; the resulting cells then migrate, sometimes for long distances, to their final positions.[60]
Once a neuron is in place, it extends dendrites and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of genes create products that influence axonal pathfinding.[60]
The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity.[60] In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at a random point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time; that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.[61]
Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely to guide development.[61]
In humans and many other mammals, new neurons are created mainly before birth, and the infant brain contains substantially more neurons than the adult brain.[60] There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which adult neurogenesis is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different: as with most types of cells in the body, they are generated throughout the lifespan.[62]
There has long been debate about whether the qualities of mind, personality, and intelligence can be attributed to heredity or to upbringing—this is the nature and nurture controversy.[63] Although many details remain to be settled, neuroscience research has clearly shown that both factors are important. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections, which in its developed form contains far more information than the genome does. In some respects, all that matters is the presence or absence of experience during critical periods of development.[64] In other respects, the quantity and quality of experience are important; for example, there is substantial evidence that animals raised in enriched environments have thicker cerebral cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.[65]
Physiology
The functions of the brain depend on the ability of neurons to transmit electrochemical signals to other cells, and their ability to respond appropriately to electrochemical signals received from other cells. The electrical properties of neurons are controlled by a wide variety of biochemical and metabolic processes, most notably the interactions between neurotransmitters and receptors that take place at synapses.[8]
Neurot
Neodpovedal si mi, pýtal som sa ťa prečo majú všetci kresťania rovnaké obsahovo rovnaké, podobné zážitky ? Pri snoch totiž nejde o rovnaké zážitky, ale každý sen sa obsahovo líší.
Naschvál som ti dával otázky na video ktoré si posielal, a na ten dlhý lin k na wiki pretože som zistoval či máš o danej veci aspon niečo naštudované, ale ako som sa presvedčil nemáš o tom naštudované ani za štipku. Hmm, to naozaj odo mna očakávaš že od takéhoto človeka budem čítať dokument ktorý je na mesiac čítania, a kde sa s najväčšou pravdepodobnostou ani nenachádza informácia ktorú hladám. Pekne si sa vykrútil, nemáš protiargumenty a preto aby si nemusel odpovedať mi tu dáš link na stostranový dokument. Namiesto toho aby si mi zopár vetami zhrnul to o čom sa v linku píše, ma tu odkazuješ na 100 stranový dokument. To naozaj očakávaš že som tak naivný ?
Bla bla bla kecáš kokotiny, ktorými ospravedlňuješ, že si trubka, čo je lenivá si niečo zistiť o vlastnej gebuli. A ano presne o tom to je. Ze len o zakladoch mozgu to mas na mesiac citania Ty si tomu za 24 rokov ten mesiac zivota nedal, ale bol si schopny zromazdit cez stovku vypovedi a nakoniec chceš odomňa aby som ti to pár vetami zhrnul - no to výš že jo Mozno ti to raz vysvetli ucitel a ty to pochopis
Iste ja som lenivý, a to hovorí ten kto si nevedel pozrieť ani jedno 10 minutové video ktoré mi poslal, a odo mna očakáva pozrieť si dokument o dlžke jedneho mesiaca.............................................
Ty tvrdíš že to máš preštudované, prečo mi teda nemožeš vysvetliť prečo sú krestanske svedectvá halucinaciou. Namiesto tých urážok a vyhovárania si to už mohol dávno vysvetliť, ale ty to nechceš vysvetliť pretože si to ani nikdy nečítal a preštudované to nemáš, alebo to preštudované máš ale žiaden protiargument to neobsahuje.
Ale hej hej dokazal si existenciu Boha tu na birdzi, svedectvami z netu chces aj nejaky veniec okolo krku? Mam totiž len kakaovy
Ďaleko za hádkami týchto dvoch sa aj tak nedostanú k vzájomnej tolerancii...
Ja som voči svedectvám trocha skeptická. Určite si myslím, že sú tie veci reálne, čo tí ľudia videli, no zároveň môžu byť aj ľudia, ktorí si to vymyslia.